Schwachstellen finden mittels Fuzzing

Schwachstellen finden mittels Fuzzing

Marc Ruef
von Marc Ruef
Lesezeit: 4 Minuten

Bei Fuzzing handelt es sich um eine Technik im Bereich des Software-Testing. Dabei werden in semi-automatisierter oder automatisierter Weise Eingaben getätigt, um mittels fehlerhafter Zugriffe unerwartete Reaktionen zu provozieren.

Die Geburt des Begriffs wird Barton Miller zugeschrieben, der 1988 an der University of Winsconsin eine entsprechende Arbeit mit dem Titel Operating System Utility Program Reliability – The Fuzz Generator durchgeführt hat. Doch schon 1983 wurde für den Macintosh durch Steve Capps eine Applikation namens The Monkey entwickelt, mit der entsprechendes Fuzz Testing in der Software MacPaint umgesetzt werden konnten.

Fuzzing ist damit eigentlich eine relativ alte Technik, die aber erst ab ca. 2005 den zaghaften Durchbruch in der IT-Security Branche geschafft hat. Heutzutage gilt es als fester Bestandteil systematischer Sicherheitsüberprüfungen.

Ein System erwartet immer irgendwelche Eingaben. Diese haben eine bestimmte Struktur. Zum Beispiel erwartet in einem Formular das Feld Postleitzahl für Schweizer Adressen stets vier Ziffern der folgenden Form (als regulärer Ausdruck):

([0-9]{4}) = { 0000, 0001, ..., 9999 }

Beim Fuzzing werden nun Eingaben getätigt, die gezielt diese Anforderungen verletzen. In diesem Beispiel bieten sich an:

Test Beispiel
kürzer als 4 Zeichen 111_
länger als 4 Zeichen 1234567890(...)
Buchstaben 123A
Sonderzeichen 123*
Minuswerte -123
konstruierte Werte 1+23 (wird nach Berechnung als 24 gehandelt)
leere Eingabe ____
nicht abgeschlossene Eingaben (gibts in diesem Beispiel nicht)
reservierten Mustern HTML-Anweisungen, SQL-Abfragen, …
alternative Codierungen UTF-8, Unicode, …

Dadurch soll ein Verhalten provoziert werden, auf das das Zielsystem nicht ausgelegt ist. Wenn zum Beispiel die PLZ eingegeben und das Formular abgeschickt wurde, dann soll direkt die Ortschaft aus einer Datenbank geholt und dargestellt werden. Doch was wird geholt, wenn 123* eingegeben wird? Mögliche Resultate, denen eine generische Kritikalität beigemessen wird, sind:

Sicherheitstechnisch Positiv
passed allgemeine Fehlermeldung (bevorzugte Lösung)
low es passiert gar nichts (vom Betrieb her aber unerwünscht)
Sicherheitstechnisch Negativ
medium technische Fehlermeldung (z.B. Informationen zur internen Verarbeitung)
medium erster Treffer wird geladen
medium letzter Treffer wird geladen
medium “zufälliger” Treffer wird geladen (z.B. je nach Sortierung)
high alle Treffer werden geladen (erweiterte Zugriffsrechte)
high auf geschützte Daten zugreifen (erweiterte Zugriffsrechte)
high geschützte Funktionen benutzen (z.B. Code ausführen)
high Datenverarbeitung blockieren (Denial of Service)

In einer guten Sicherheitsüberprüfung wird mit intelligentem Fuzzing gearbeitet. Dies erfordert aber viel Verständnis für die eingesetzten Technologien. Das simple Abstützen auf irgendwelche Vulnerability Scanner gewährleistet nicht, dass derlei Tests mitberücksichtigt werden. Gerade wenn individuelle Software-Lösungen zum Tragen kommen, muss ein zielgerichtetes Fuzzing angestrebt werden.

Über den Autor

Marc Ruef

Marc Ruef ist seit Ende der 1990er Jahre im Cybersecurity-Bereich aktiv. Er hat vor allem im deutschsprachigen Raum aufgrund der Vielzahl durch ihn veröffentlichten Fachpublikationen und Bücher – dazu gehört besonders Die Kunst des Penetration Testing – Bekanntheit erlangt. Er ist Dozent an verschiedenen Fakultäten, darunter ETH, HWZ, HSLU und IKF. (ORCID 0000-0002-1328-6357)

Links

Sie brauchen Unterstützung bei einem solchen Projekt?

Unsere Spezialisten kontaktieren Sie gern!

×
Konkrete Kritik an CVSS4

Konkrete Kritik an CVSS4

Marc Ruef

scip Cybersecurity Forecast

scip Cybersecurity Forecast

Marc Ruef

Voice Authentisierung

Voice Authentisierung

Marc Ruef

Bug-Bounty

Bug-Bounty

Marc Ruef

Sie wollen mehr?

Weitere Artikel im Archiv

Sie brauchen Unterstützung bei einem solchen Projekt?

Unsere Spezialisten kontaktieren Sie gern!

Sie wollen mehr?

Weitere Artikel im Archiv